
A transport equation for the multiple scattering of electromagnetic waves by a turbulent

plasma

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1968 J. Phys. A: Gen. Phys. 1 675

(http://iopscience.iop.org/0022-3689/1/6/306)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 30/05/2010 at 13:41

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0022-3689/1/6
http://iopscience.iop.org/0022-3689
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J ,  P H Y S .  A ( P R O C .  P H Y S .  SOC.) ,  1968 ,  S E R .  2, V O L .  1. P R I N T E D  I N  G R E A T  B R I T A I N  

A transport equation for the multiple scattering of 
electromagnetic waves by a turbulent plasma 

P. E. S T O T T  
United Kingdom Atomic Energy Authority, Culham Laboratory, Abingdon, Berks. 
MS. received 5th June 1968 

Abstract. Calculations of the scattering of electromagnetic waves by a turbulent 
plasma are usually based upon either a weak scattering or a random-walk approxima- 
tion. The  multiple scattering process is considered here by a method which is 
independent of the magnitude of the turbulent fluctuations. A solution is obtained 
in the form of a transport equation whose familiar properties describe the long-range 
behaviour of the scattering. The diffraction effects are contained in the kernel of the 
transport equation which is equivalent to the scattering cross section per unit volume 
of the plasma. 

1. Introduction 
The propagation of electromagnetic radiation through a turbulent plasma is of consider- 

able interest in both naturally occurring and laboratory produced plasmas. For example, 
fluctuations in the electron density of the ionosphere are known to be responsible for the 
‘twinkling’ effect observed in radio stars and the scattering of microwaves by turbulent 
instabilities has been observed in high-current discharges such as ZETA (Edwards and Stott 
1965, Stott 1967 a). 

Radiation propagating through a turbulent plasma is scattered by random localized 
variations in the refractive index produced by the fluctuating electron density. The  scatter- 
ing is in general a non-linear process since the radiation amplitude at any point in the 
plasma is composed partly of waves scattered from other regions of the plasma and partly 
of the incident wave. The  problem may be linearized and a straightforward solution 
obtained if the refractive index fluctuations are of sufficiently small magnitude to produce 
very weak scattering. Calculations of this nature (e.g. Tatarskii 1961, Chernov 1960) are 
useful in ionospheric scattering but are not applicable to the recent experiments which 
have been carried out in laboratory plasmas at frequencies close to the plasma frequency, 
If the turbulent scale length is large compared with the radiation wavelength, the simplify- 
ing approximation of ray optics may be made. A ray optics solution has been given by 
Wort (1966) by tracing the trajectories of individual ray paths through a randomly spaced 
set of parallel cylindrical plasma filaments which is taken as a model of two-dimensional 
turbulence. Some of the more drastic assumptions of this model, but not the restriction 
to ray optics, have been removed by the recent numerical work of Rusbridge (1968). 

A wave optics solution for the problem of multiple scattering has been given by Tatarskii 
(1964) and independently by Stott (1967 b). The electromagnetic wave equation is taken 
as the basis for a Green function series solution in which the randomly varying part of the 
refractive index is the expansion parameter. If we average term by term we may obtain 
an approximate geometric series which can be summed to give an expression for the mean 
Green function. The imaginary part of the singularities of the mean Green function in 
k space represents the apparent attenuation experienced by an initially coherent wave as it 
is converted by scattering into incoherent radiation. However, it is difficult to calculate 
the distribution of the incoherent radiation, especially for experimentally realistic scattering 
geometries. There are further limitations to the Green function method stemming from 
the random-phase approximation which implies that the scattering time be short compared 
with the free time between scatterings. It is also necessary to make mathematically un- 
supported assumptions regarding the continuity of the analytic properties of the Green 
function throughout the expansion and resummation procedure. 
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In  this paper we consider the scattering of electromagnetic waves in a turbulent plasma 
using a method which avoids these difficulties. A generalized phase-space expansion tech- 
nique, which removes the time-scale restriction, is employed to derive a transport equation 
for the energy density of the scattered electromagnetic field. The  advantage of this 
formulation is that it separates the short-range interactions, i.e. wave optics effects, from 
the long-range, i.e. ray optics effects. The  former are treated correctly in terms of diffraction 
theory and are contained in the kernel, the equivalent of the scattering cross section in a 
particle transport equation, whilst the long-range effects are conveniently handled by the 
usual properties of the transport equation. 

2. Plasma turbulence and density fluctuations 
The term ‘turbulent plasma’ will be used here simply to refer to a plasma which supports 

density fluctuations of a scale length longer than the Debye length yet small compared 
with the overall dimensions of the plasma and with a time scale which is much shorter 
than the plasma lifetime. I t  will be assumed that a statistical description of the turbulence 
is both adequate and meaningful. 

The local electron density will be written as n = 5 + n(r,  t ) ,  where ii is the mean electron 
density, which is assumed stationary in space and time and n(r,  t )  is a randomly varying 
quantity with zero mean value. 

We will consider initially a Gaussian functional probability distribution for n(r,  t ) ,  
since a more generalized distribution can be included easily a t  a later stage. 

P([n(r,  t ) ] )  = N e s p [  -J n ( r ,  t ) {Qn(r ,  r ’ ,  t ,  t’))-In(r’, t’)  dr  dr‘ dt dt’] (2.1) 

N being a normalization such that the total probability is unity. 
Integration over the functional space (Gel’fand and Yaglom 1960) of n(r,  t )  gives 

( n ( r ,  t )a(r’ ,  t ’ ) )  = j” n(r ,  t)n(r’,  t’)P([n])8n = Qn(r ,  r ’ ,  t ,  t ’ )  (2.2) 

where Qn(r,  r’, t ,  t’) is the density correlation function. We will use angular brackets as 
in (2.2) to denote ensemble averages. 

I t  is convenient to introduce a typical scale length a and time 7 without insisting at 
this stage on any particular functional form for the correlation. 

For homogeneous turbulence 
Qn(r ,  r ’ ,  t ,  t ’ )  = Qn(r 4, t - t’) .  

We see that, on taking ensemble averages by integration, all the odd moments of n(r,  t )  
are zero, whilst the even moments can be expressed as permutations of the binary correlation 
Qn(r,  r ‘ ,  t ,  t‘).  Thus for odd k 

and for even k 
(n(rl, tl) . ‘ *  n ( r k ,  t k ) )  = 

< n ( r ~ ,  t l)  ***a(rk, t k ) >  = 2 Q n ( r l ,  r2, t l ,  t z )  I . .  Q(rl, r k ,  t , ,  ~ J C ) *  (2.3) 
Berm 

The  dielectric constant of a plasma in an oscillating electromagnetic field of frequency w 
is given by the Appleton-Hartree equation (Budden 1961) 

z = v jw  

Y = w c / w  
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up is the plasma frequency, wc the electron cyclotron frequency and v the electron collision 
frequency. YL and YT are components parallel and transverse to the direction of the 
steady magnetic field Bo. n, is the critical density, i.e. the density at which the plasma 
frequency up is equal to w .  

The dielectric constant is a function of the electron density. Thus, density fluctuations 
produce corresponding local variations in the dielectric constant and hence the refractive 
index, resulting in the randomization of the phase of a propagating wave front. We shall 
obtain a solution in terms of the dielectric correlation function, which is denumerable in 
terms of the density correlation by means of (2.4), although the dependence is non-linear 
in general, In  many cases, however, the Appleton-Hartree equation can be simplified. For 
example, if the collision and cyclotron frequencies are small compared with w ,  i.e. 2 < 1, 
Y < 1, the dielectric constant is linearly dependent upon the density: 

Then 

and 
Qr = nc-2Q,,. 

3. The generalized expansion 
We will illustrate the general principles of the method of solution which will be employed 

by considering briefly the analogous problem of Brownian motion. Consider a single 
classical particle moving with a velocity U(t )  in a medium of viscosity J under the influence 
of a fluctuating force f ( t ) .  The equation of motion is 

d li 
-- = - J U + f ( t ) .  
dt  

Since the particle is a discrete entity the probability p ( u ,  t )  of finding U(t )  equal to 
some value U at a time t is a &function 

Y 1 ow 
ap au a 
at zt a r ;  _- 6 (21 - U( t)> _ -  - 

au a 
at a L 1  

- - S{u - q t ) )  

2 
a 1.1 - { - JZL + f (  t)}8 (21 - U( t ) }  

i.e. 
2p s 
-+-{-Ju+f( t )>p = 0. 
at a21 

This is Liouville’s equation for a single particle and, since it is linear in 
true also for an ensemble of particles. 

We may now specify the randomly varying force f ( t )  by means of 
probability 

w-l) = Nexp(  -fi SJf ( t l )g- ’ ( t l  - t z ) f ( t z )  dtl dtz) 

(3.1) 

p ,  it must be 

the functional 
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where AT is a normalization such that the total probability is unity. Then clearly 

If the time scale of g(t) is sufficiently short, as for example if g(t) = ye-xt and x 
( p )  is a Gaussian 

J ,  

( J + X >  y J  1/2 

(P) = (-1 exP[--u2) 2YJ 

[at  a d  

which is a result well known in the theory of Brownian motion. 

equation 
It can be shown easily that the mean distribution function satisfies the Fokker-Planck 

( 3  4 au a 11 a a \  -+- - J u - y ( J + x ) - l y -  ( p )  = 0.  

I n  a more exact formulation of Brownian motion, the scattering force f(t) is velocity 
dependent and no longer completely externally defined. This force f ( u ,  t )  is not com- 
pletely random since u is a functional off, but a convenient method of solution is to take 
the force as being approximately random and to obtain a solution as a series expansion 
about the equilibrium ( p 0 ) .  As pointed out by Edwards (1965), this approximation is 
independent of the magnitude of the fluctuations and must be distinguished from the 
usual form of weak-coupling random-phase approximation. One can derive the Fokker- 
Planck equation of Brownian motion in the form 

( 3 . 3 )  

f2 = J +  R where J is the viscous friction and R, which is referred to as the dynamic friction, 
is a term occurring when the force f is internally dependent upon the variable U .  

Returning to the electromagnetic case, it is a fairly straightforward matter to obtain 
from Maxwell's equations the analogous equation to (3.1). We may then proceed along 
the lines suggested above to a Fokker-Planck equation (Stott 1967 b) but this is by no 
means as easy as it was for the Brownian motion model. The difficulties are apparently 
caused by the basic feature of Liouville's equation which separates the space and time 
variables. This is a useful thing to do in kinetic theory where they really are separable 
quantities, but is inconvenient in the electromagnetic case where space and time are closely 
interrelated. These and other difficulties can be avoided by using the Lagrangian formula- 
tion of statistical mechanics invented by Edwards (1965) for the analogous quantum- 
mechanical problem of electrons in a disordered system. 

The  Lagrangian equation of motion is 

2 being the Lagrangian density and xi the space-time 4-vector: x i  = ( r ,  ict). A, are the 
components of the vector potential A, defined in the Coulomb gauge, divA = 0. There 
is also a similar equation to (3.4) for the complex conjugate A,*. Then 

1 2A 1 aA* 
c at  c at 

E =- -  and E* =-- 

H = curl A and H* = curl A*. 
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The  Lagrangian density for the electromagnetic field (Landau and Lifshitz 

1 
877 

2 = - ( E . D * - B . H * )  

or in terms of the vector potential, 

1 a 2  
2 = (8n)-l G t ( r ,  t ) - A  .,A* -cur lA.  curlA* 

at ct 

679 

1959) is 

( 3 . 5 )  

where [ ( r ,  t) is the dielectric constant. 

Edwards (1965) the Lagrangian equivalent of (3.1) is 
We introduce the probability function for A, and Au*: P([A,, A,"]), and following 

Substituting for 9 from (3.5) we obtain 

-curl curl A, 

We will use the superscript K to denote the 4-dimensional Fourier transform, thus 

A k  = A jk, :) = 1 A(r, t )  exp( - io t  + ik . r )  dr  dt 

Ak* = A* (k, :) = 1 A*(r, t )  exp(iwt -ik . r )  dr  dt. 
and 

Fourier transformation of (3.7) gives 

k 

k 
W k 2  Meak = a,, - E  c2 -k2Daok 

D,a" = a,, -k,k,k-'. 
and 

The  term E = [5k-3']k=j has been included in Maok and the prime on the second summation 
sign in (3.8) is used to indicate that the term k = j is omitted from the summation. T h e  
subscripts E, p, etc., are used to denote the polarization components of the vector potential 
and the usual tensor conventions regarding summation over repeated indices will be 
employed. 

The  Brownian motion model suggests a Gaussian form for the equilibrium distribution 

P,([A, A*]) = Nexp(  - C A,"(Ck)-lAak**). 
uk 

(3.9) 
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The gauge condition provides the constraint 

divA = k . A k  = 0 

and hence the correlation 

jAakABk*) = 1 AakAA,"Po([A])8(k Ak)SA 

= C'DD,~ 

= CaBk. 

We expect Po to be the solution of the Fokker-Planck equation 

k 

k 

Substitution of (3.9) into (3.1 1) requires that 

-2 S a y k ( C y f i k ) - '  = 0 
/ 

and 
Qa4k* - 2 S,,"(CYB">-' = 0 .  

/ 

We see that 
DarkDyak = Dagh- L 

/ 

which suggests that 

and 

We shall write 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

defining RaBk, the electromagnetic analogue of the dynamic friction term in Brownian 
motion. 

The  operator in (3.11) is Hermite's operator generalized for the functional space of 
Aak and P([A])  may therefore be expanded as a series of functional Hermite polynomials 
(Erdelyi et al. 1953) multiplied by the basic Gaussian, i.e. 

P([A, A*]) = P,+P,+P,+etc .  

= C'anrIH.,,n,* ( A k ,  Ak*)P,. (3.16) 
n k 

The functional Hermite polynomials are mutually orthogonal and are defined by 

H n k , n L + ( A  k , Ak* ) = ((nk+ 1)!}-'"{(nk*+ I)!}-'" 

where n = (nk ..., nkh ...) is a vector in the Hilbert space of the polynomials. 
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We proceed with the expansion in a systematic manner by first rearranging equation (3.8) : 

k 

k 

a -1X - 
LY’ 2Aak 

(3.18) 

k 

If we assign the nominal order t2 to R and S we can make the expansion in ascending 
orders of (. Thus to the zeroth order we have (3.11) and to the first order 

k 

ki 

This suggests that P, has the form 

Substituting in (3.19) we obtain 

La, kf = (a,/ -!&/*)-l. 

Continuing to the next order in ( with the series solution of (3.18) 

a C O 2  
H P , =  -2’- 6 -k- tk- iABi -c.c. ( aB aAak ” c2 

(3.19) 

(3.20) 

(3.21) 

(3.22) 

k 

We have defined the mean value of the electromagnetic correlation (AakAAk*> using 
only Po and therefore the higher-order probability terms must not contain any second-order 
Hermite polynomials, i.e. 

~ A a k A o k * ( P , + P 2 +  ... etc.)GAsA* = 0. (3.23) 

This condition will now be applied to the series solution of (3.18) to determine successive 
approximations for the quantities Rk and Sk  which will then be used together with the 
consistency equation (3.12) to obtain an equation for Ckc. 

We will assume a Gaussian distribution for the dielectric fluctuations f ( r ,  t )  and con- 
sider the extension of the theory to a more generalized form in the appendix. 

F ( [ [ ] )  = Nexp{ +(r ,  t ) & - l ( r  - r l ,  t - t ’ ) ( (r1,  t’)}. (3 -24) 
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The  dielectric correlation is 

<t(ri, fi)&rz, t z ) )  = Qe(ri -rz; t i  -tz). (3.25) 
On averaging over t, ( P l >  = 0. The  lowest-order approximation is thus obtained by 
applying the condition (3.25) to the second-order expansion (3.22) : 

and a similar equation for the complex conjugates. 
Together with (3.12) we have immediately the lowest-order equation for Ck 

and thus 

Fourier transformation of (3.30) gives an equation for the propagation through the plasma 
of the mean electromagnetic correlation 

x (Aa(rl’, ti’)A5*(rZr, t z ’ ) )  dydr l r  dr,’ dt,’ dt,’ = 0. 

Returning to (3.26), we will identify 

and 

We note that 

(3.29) 

(3.30) 

(3.31) 

This is not a unique choice, but one which is strongly suggested both by the form of 
(3.26) and of Qk which agrees with the Green function expansion in the limit of weak 
fluctuations (Stott 1967 b). We note that Rk and Sk are of order Qe, i.e. t2, confirming 
our earlier assumption as to the ordering of (3.18). 

Continuing now with the series expansion of (3.18) the application of the condition 
(3.23) to the terms involving higher powers of f gives higher-order corrections to the 
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equation for Ck. The general term of the expansion is 

k 

(3.32) 

k 

As the algebraic solution rapidly becomes rather tedious, we will make use of a diagram- 
matic technique invented by Edwards (1965). 

We will use a full line to represent Auk (or Auk*), a broken line to represent a/i3Auk 
and a dotted line for the interaction We will write the diagrams across the page 
from right to left as in the normal algebraic convention of time ordering and will therefore 
adopt the convention that broken lines will always act to the left. The  basic term of the 
expansion is the vertex 

The  averaging process is carried out diagrammatically by adding a series of these terms 
and joining together the free ends of pairs of interaction lines into a join which we will 
mark with a cross. The  full lines may either join together to give a correlation term 
C u t  = (AakABk*) or may be annihilated by a broken line. Each diagram of the averaged 
series will have two remaining unjoined photon lines. These may be either both broken 
lines, in which case we identify the diagram as an S-like term 

i.e. 

\ 
\ 
\ 
\ 
\ 

J3 /’ 
/’ 

or one broken and one full line which corresponds to an R-like term, i.e. 

The  second-order diagrams, i.e. P2, are 

(3.33) 



684 P. E. Stott 

and the central portions of these diagrams are equivalent to the expressions which we have 
already obtained for Saqk and Raqk. 

The denominator may be included in a systematic way by drawing an imaginary vertical 
line in between each pair of vertices and adding an Q of appropriate Fourier index for each 
photon line which is cut. For example, the second-order diagram contributes a denominator 
( Q k -  Qj*)-l 

(3.34) 

'The irreducible diagrams of the next order, i.e. P,, are 
k - 1  k - j  

............. ru'. ........... H ...... 
,., '.. 

, I. 

___ ----__.-_.__ .' '. L-L- '. 

which is a contribution to Rusk and 

(3.35) 

k - i  k - j  .... .x... .......... x .  . . . .  .... . . . .  . . .  : .. 
k ,:.' 1 ..... m ..... j .... --------_-. 

.- /.----* (3.36) 
_.--I 

/-- 

_ / / /  k 
~ / - /  

.* .- 

which is a contribution to SFqk. 
Continuing in this way with the expansion, we see that the generalized form of (3.28) is 

(k ,2  - k 2 ) C k  - z I X k - i ( C k  -Ci) = 0. (3.37) 
i 

x k - j  is the sum of all the irreducible diagrams like (3.33), (3.35) and (3.36). The first few 
terms are 
x k - j  = ( Q k  -Qi j ;h) - l ,k2w,2C-4Q5k- j+  2 ( Q k  -ai*) - 1 w k 2 w 1 2 c - 4 Q r k - l (  Qh- -Q2j") - 1 

im 

x w k 2 U j 2 c - 4 Q t k - j ( Q k  -Qm*)- lG(m+k - j  - Z ) +  . . .. (3.38) 

This equation is not complete in itself of course since Qk involves Rk and generalizing 
(3.30) 

R k  = C I X k - i .  (3.39) 
j 

We can argue that the main effect of the dependence of Qk on Rk will be to displace 
slightly the position of the pole in k space, at Qk = 0, away from the value k = i: w / c z / $ ,  
which it would have if there were no scattering. This effect will not be too dependent on 
the value of k except very close to [ = 0, and we can thus set up an ordering procedure in 
Rk and form an approximate solution to (3.38). A simple example will be given in 9 5. 
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We shall see in the following section that the formulation developed above leads 
naturally to a transport equation for the multiply scattered electromagnetic field, which will 
satisfy the usual sum rules for energy and wave momentum conservation. We note also 
that the time-scale restriction, imposed by expansion, has been avoided. 

4. A photon transport equation 
In  the above analysis, the short-range effects of the scattering have been correctly 

treated by wave optics and we now proceed to the photon limit which provides a convenient 
basis for a description of the diffusion-like behaviour of the long-range effects of the multiple 
scattering. 

The  mean electromagnetic field correlation is 

Introducing a change of space and time variables, 

The  correlation may be written in the form 

C,a(r, R ,  t ,  T) = (A,(r+&R, t+&T)A,"(r-&R, t -3T)). 

We Fourier transform with respect to the variables R and T 

Ca4(r, t ,  k ,  U) = 1 CaB(r,  R ,  t ,  T) eik.R e-ioT dR d T  

and in the limit 17' -+ 0 we define 

C a ~ ( r ,  t ,  k ,  U) d~ a,, 
4 

= 2 a,, J (A,(r+$R, t)AB*(r -$R, t ) )  dR. ( 4 4  
4 

Following the usual procedure of taking the classical limit in quantum mechanics, we 
will identifyf(r, k ,  t )  as the probability of finding a photon with momentum k at a point r 
at time t. \+'e will verify later thatf(r, k ,  t )  does indeed have the correct properties required 
of a classical probability distribution function. 

In  coordinate space, (3.37) becomes 

i 
- Im r xk- j (CuBk --CUBj) d*j  d4k exp{ -ik.(rl - r 2 ) }  exp(iwk(t, -t2)} = 0.  

Fourier transformation of R and T gives the photon transport equation, 

f(r, k ,  t )  + 17(k -j){f(r, k ,  t> - . f (r ,  1, t ) }  d j  = 0 

r ( k  - j )  = Imx(k  - j ) .  
where 

(4.5) 
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Transport equations of this form are well known in many branches of physics and the 
kernel P(k - j )  is equivalent to the mean scattering cross section per unit plasma volume. 
The  total scattering cross section is obtained by integration over all j and equation (4.5) 
can be expressed conveniently by measuring space and time in the respective units of 
mean free path and time, i.e. 

Ymfp = j r (k  - j )  d i  

clkl 

and 
- wk 

t m f p  = t - ~ n i f p .  

The  normalized transport equation is 

( i + S  - v) f(r, k ,  t )  + 1 M(k -9)(f(r, k ,  t )  -f(r , j ,  t ) )  d j  = S(r ,  k ,  t )  (4.6) 

where R is a unit vector in the direction of k and S(r, k,  t )  is a photon source which has 
been included for completeness, a ( k - j )  is the scattering cross section normalized so that 

1 ~ ( k  - j )  d j  = 1. 

The photon number density p(r, t )  and current density J(r ,  t )  are given by the appropriate 
moments of f ( r ,  k ,  t )  : 

p( r ,  t )  = Jf(r ,  k, t )  dk 

J ( r ,  t )  = /f(r, k ,  t )L  I dk. 

Integrating equation (4.6) 

s s 
-p ( r ,  t )  + v J ( r ,  t )  = S(r, t )  = 
at 

S(r ,  k ,  t )  dk 

and the first moment of the transport equation is 

If the photon source is zero within the plasma volume and J has only a slowly varying 
time dependence, we may eliminate J to obtain the familiar diffusion equation 

a 
at 
- p ( r ,  t )  + V p ( Y ,  t )  = 0 .  

5. Calculation of the scattering cross section 
The cross section for a single scattering event occurring in a unit volume of plasma is 

given by the imaginary part of the expression (3.38), which is the sum of the series of 
irreducible scattering diagrams discussed earlier. The individual terms represent succes- 
sively higher-order contributions to the scattering and each term involves denominators 
of the form 

where 
( Q k  -Qj*)-l (ko2 - j o z  - (k2  -jZ)+RB -Rj*)-l 

cl?: 

ko2 = -. 
C2 

The singularities of these denominators in the complex space of K and j impose the 
conservation of energy and momentum between the initial and final states j and k. The 
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Rk, which represent the modifications in energy and momentum induced by the background 
of turbulent plasma, are themselves given by a non-linear equation (3.39). This coupled 
set of equations is difficult to solve in general but there are some situations which enable 
us to limit the number of terms involved and which permit concise solutions. 

We will consider a plasma in which the electron cyclotron and collision frequencies 
are both small compared with the propagating frequency, since this conveniently simplifies 
the Appleton-Hartree equation (2.4). 

For 
w c <  w and U <  o 

and 

The  dielectric constant is scalar in this case and there are no polarization effects. 
We will take a stationary isotropic density fluctuation of the form 

where q(r/a) is unity at r = 0 and decreases monotonically to zero as I Y ]  increases. 

(n0/n,)2(ka)3. In  the limit that this parameter is small, i.e. 
T h e  terms of the series (3.38) contribute to the cross section in ascending powers of 

only the contribution of the leading term will be important. The  dynamical friction terms 
Rk and Rj* are also of order p and we may therefore approximate 

Q2h: = M2h: = k2 -k 2 .  
0 

T o  the first-order approximation we then have 
2 

q(k-j)S(lkl  -1jI). 

For example, if the correlation is Gaussian, the scattering cross section per unit volume is 

and the mean free path between successive scatterings is 

A coherent wave front propagating through the plasma density fluctuations will thus 
be attenuated with an e-folding length equal to rmfp.  As we might expect for the lowest- 
order approximation, this agrees well with other scattering theories, for example that of 
Tatarskii (1964). 

T o  extend the range of our solution to higher orders of the expansion parameter p ,  we 
would proceed along the lines of successive approximations alternating between equa- 
tions (3.15) and (3.38), but this would be a tedious process and will not be attempted here. 

It is frequently more realistic to regard the plasma density fluctuations as a randomly 
arranged set of discrete plasma 'blobs' rather than a truly turbulent spectrum. We then 
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write the local plasma density as 
4 r )  = 2 rl(r - K )  

RE 

where y ( r )  is the density profile of a typical plasma blob and R ,  ... etc. are a set of vectors 
which we assume to be uniformly distributed with a number density IC’. We can then con- 
struct the density correlations, for example, 

(z(rl)z(r2)) = Nj ~ ~ ( k )  exp{ik.(rl - r z ) }  dk. 

The sum of the series of terms represented by the diagrams like (3.40) is then equal to the 
Born approximations for the scattering cross section of a single plasma blob. Interconnected 
terms like (3.35) may be interpreted as a scattering commencing at one blob before the 
previous scattering is completed. If the blobs really are discrete we would expect such 
events to be infrequent and the contribution from these terms to be small. The scattering 
cross section is then given simply by 

r ( k  - j )  = :Vy(k - j )  

where y ( k - j )  is the cross section of a single blob. This is the usual result obtained in 
transport theory for a set of discrete scatterers. 

6. Conclusion 
A transport equation for the multiple scattering of electromagnetic radiation by a 

turbulent plasma has been derived by a mathematically rigorous method involving the 
expansion of the Lagrangian probability function for the electromagnetic field. The  
advantage of this formulation over other multiple scattering theories is that the solution 
of the transport equation, which is well known in other branches of physics, can take 
account of the boundary conditions and geometry appropriate to any specific experimental 
configuration. The  kernel of the transport equation, which is equivalent to the scattering 
cross section of the usual particle transport equation, has been given in terms of a set of 
equations involving the plasma correlation function. As with all multiple interaction 
problems the solution of this set of equations for the general case is a rather formidable 
task but simple solutions are possible for certain limiting cases and these provide a basis 
for extending the range of validity of the solution. Kumerical results of computations based 
on this theory and a comparison with experimental observations of microwave scattering 
in turbulent laboratory plasma will be the subject of a further publication. 
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Appendix. Non-Gaussian dielectric fluctuations 

probability distribution for ( ( r ,  t ) .  For a generalized distribution (3.24) becomes 

I am grateful to Professor S. F. Edwards for suggesting the method of solution of this 

It is a straightforward, but tedious, matter to extend the treatment to a non-Gaussian 

F ( [ )  = Nexp{ - - [ ( r ,  t )Q<%-l(r ,  r ’ ,  t ,  t’)[(r’, t’) 
-(( r ,  t)(( r ’ , t ’)[( r”,  t”)& - I( r ,  r ’ , r ” ,  t, t ’, t”) - . . . e tc .I. 

We then have contributions to the scattering from irreducible diagrams such as 
, , , , .x . . . , .’ . .. 
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The  contribution from these terms is important for plasmas with non-Gaussian density 
fluctuation or where magnetic effects distort the dielectric constant for Gaussian density 
fluctuations. 

References 
BUDDEN, K. G., 1961, Radio Waves in the Ionosphere (London : Cambridge University Press). 
CHERNOV, L. A., 1960, Wave Propagation in a Random ,Wedizim (New York: McGraw-Hill). 
EDWARDS, S. F., 1965, Proc. Phys. Soc., 85, 1-25. 
EDWARDS, S .  F., and STOTT, P. E., 1965, Proc. Int. Conf. on Plasma Physics, Culham, 1965 (Vienna: 

ERDELYI, A . ,  et al., 1953, Higher Transcendental Functions, Vol. I1 (New York: McGraw-Hill). 
GEL’FAXD, I. M., and YAGLOM, A. M., 1960, J. Math. Phys., 1, 48-69. 
LANDAU, L. D., and LIFSHITZ, E. M., 1959, The Classical Theory of Fields (Reading, Mass.: Addison- 

RUSBRIDGE, NI. G., 1968, Plasma Phys., 10, 95-108. 
STOTT, P. E., 1967 a, Proc. 8th Conf. on Phenomena in Ionized Gases, Vienna (Vienna: International 

- 
TATARSKII, V. I., 1961, Wave Propagation in a Turbulent Medium (Xew York: McGraw-Hill). 

WORT, D. J. H., 1966, Plasma Phys., 8, 79-93. 

International Atomic Energy Agency), Vol. 2, pp. 765-78. 

Wesley). 

Atomic Energy Agency). 
1967 b, Ph.D. Thesis, Manchester University. 

- 1964, SOU. Phys.-JETP, 19, 946-53. 


